

TABLE I

Element Number	Initial Electrical Length (Degrees)	Final Electrical Length (Degrees)
1	100.	49.139
2	100.	97.149
3	100.	74.658
4 (Transistor)	----	-----
5	100.	75.566
6	100.	133.061
7	100.	88.435
8 (Transistor)	----	-----
9	100.	60.446
10	100.	137.678
11	100.	63.337

Note: Initial and final element lengths for the 1-2 GHz amplifier.

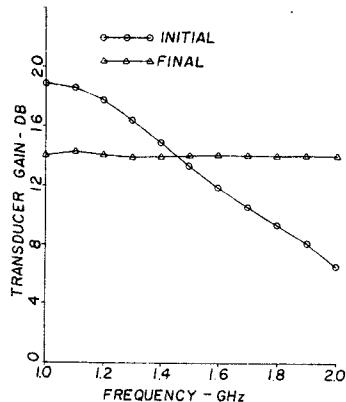


Fig. 2.

shown in Table I. All transmission line impedances were fixed at 50Ω and only line lengths were allowed to vary. A value of $p = 4$

was selected for the least p th objective function. The frequency points were chosen as: 1.00, 1.25, 1.50, 1.75, and 2.00 GHz. The S parameters for the HP35831E transistors were obtained from the manufacturer's specifications.

After fifteen iterations or about 122 s of computer time, the program converged to the final parameter values given in Table I. Fig. 2 shows the frequency response of both initial and final designs. In order to obtain smooth curves, the responses at additional frequency points were calculated using MECAP [4]. The optimized response is $14 \text{ dB} + 0.315 \text{ dB}$, -0.100 dB over the octave bandwidth.

ACKNOWLEDGMENT

The authors wish to thank J. F. Gilmore and B. W. Leake of the Raytheon Company, Wayland, Mass., for transmitting a modified version of DEMON [5], part of which is used in the analysis routine of NOVA. The subroutine MATMUL, from Calahan [6], was also used in NOVA. Finally, the authors would like to acknowledge many helpful conversations with Prof. F. H. Irons of the University of Maine.

REFERENCES

- [1] J. W. Bandler, "Optimization methods for computer-aided design," *IEEE Trans. Microwave Theory Tech. (Special Issue on Computer-Oriented Microwave Practices)*, vol. MTT-17, pp. 533-552, Aug. 1969.
- [2] R. Fletcher and M. J. D. Powell, "A rapidly convergent descent method for minimization," *Computer J.*, vol. 6, pp. 163-168, June 1963.
- [3] J. W. Bandler and R. E. Seviora, "Current trends in network optimization," *IEEE Trans. Microwave Theory Tech. (1970 Symp. Issue)*, vol. MTT-18, pp. 1159-1170, Dec. 1970.
- [4] J. C. Field and D. L. Herrick, "MECAP—An analysis program for microwave engineering courses," *IEEE Trans. Educ. (Short Notes)*, vol. E-17, pp. 198-201, Nov. 1974.
- [5] V. G. Gelnovatch and I. L. Chase, "DEMON—an optimal seeking computer program for the design of microwave circuits," *IEEE J. of Solid-State Circuits, (Special ISSCC Issue on Solid-State Microwave Circuits)*, vol. SC-5, pp. 303-309, Dec. 1970.
- [6] D. A. Calahan, *Computer-Aided Network Design* (preliminary edition). New York: McGraw-Hill, 1968, p. 291.

Contributors

Chung-Kwang Chou (S'72) was born in Chung-King, China, on May 11, 1947. He received the B.S.E.E. degree from the National Taiwan University, Republic of China, and the M.S. degree in electrical engineering from Washington University, St. Louis, Mo., in 1968, and 1971, respectively. He is currently studying electrical engineering and physiology toward the Ph.D. degree at the University of Washington, Seattle.

Since 1971 he has been involved in the research of microwave biological effects on the nervous system with the Department of Rehabilitation Medicine at the University of Washington. His research interests include bioengineering and physiology, especially the biological effects and medical applications of EM energy.

Mr. Chou is a member of Tau Beta Pi and Sigma Xi.

Kenneth R. Courtney received the B.S. degree in biochemistry from Washington State University, Pullman, the M.S. degree in physiology, and the Ph.D. degree in biophysics, both from the University of Washington, Seattle, in 1967, 1968, and 1974, respectively.

He was an Instructor at Centralia College from 1969 to 1970 and was later with the Department of Rehabilitation Medicine, University of Washington. He is presently working as a Research Associate at the University of Colorado Medical Center, Boulder, on problems related to nerve and synapse regeneration in amphibian autonomic ganglia. His major research interest is the electrophysiological study of factors determining the stability of nervous tissues.

Arthur W. Guy (S'54-M'57-SM'74), for a photograph and biography please see page 538 of the June 1975 issue of this TRANSACTIONS.

Takeshi Hatsuda (M'68) was born in Shimizu City, Shizuoka, Japan, on December 2, 1941. He received the B.S., M.S., and Ph.D. degrees in electrical engineering, all from the University of Hokkaido, Sapporo, Japan, in 1965, 1967, and 1974, respectively.

In 1967 he joined the Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Yokosuka-shi, Kanagawa, Japan, and is now a Staff Engineer of the Satellite Communication System Section. His research work since 1965 has been on the relaxation method for the solution of the electromagnetic field problem. Since 1967 he has been engaged in research on transmission line analysis and microwave integrated circuits, e.g., microwave transistor amplifiers and filters. From 1973 to the present he has been engaged in the research and development of system design for the lower millimeter-wave satellite communication systems.

Dr. Hatsuda is a member of the Institute of Electronics and Communication Engineers of Japan and the Institute of Television Engineers of Japan.

Tatsuo Itoh (M'69-SM'74) was born in Tokyo, Japan, on May 5, 1940. He received the B.S. and M.S. degrees, both in electrical engineering, from the Yokohama National University, Yokohama, Japan, in 1964 and 1966, respectively, and the Ph.D. degree in electrical engineering from the University of Illinois at Urbana-Champaign, Urbana, in 1969.

Since September 1966 he has been with the Electromagnetics Laboratory, University of Illinois. He has also been associated with the Coordinated Science Laboratory of the same university since August 1974. He is currently a Senior Research Engineer (with the rank of Associate Professor). During the academic year 1972-1973, he was appointed a Fellow of the Center for Advanced Study, University of Illinois. His research has been on electromagnetic theory, microwave techniques, optical communication, and numerical techniques.

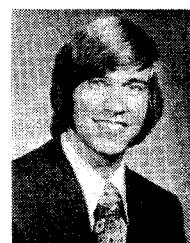
Dr. Itoh is a member of the Institute of Electronics and Communication Engineers of Japan, Sigma Xi, and Commission VI of the International Scientific Radio Union.

Anthony R. Kerr (S'64-A'66) was born in England on August 30, 1941. He received the B.E., M.Eng.Sc., and Ph.D. degrees from the University of Melbourne, Melbourne, Vic., Australia, in 1964, 1967, and 1969, respectively.

In 1969 he joined the Commonwealth Scientific and Industrial Research Organization, Sydney, Australia, to develop low-noise receivers for radio astronomy. From 1971 to 1974 he worked on low-noise cryogenic receivers for millimeter-wave astronomy with the National Radio Astronomy Observatory, Charlottesville, Va. He is presently with the Goddard Institute for Space Studies, New York, N.Y., developing low-noise receivers for millimeter and submillimeter wavelengths.

Reinhard H. Knerr (M'71-SM'73) was born in Pirmasens, Germany. He received the undergraduate degree from the Technische Hochschule, Aachen, Germany, in 1960; the Dipl. Ing. Degree from the National College of Electrical Engineering and Hydraulics, Toulouse, France, in 1962. He was then a Graduate Assistant, NATO Scholar, and finally full-time Instructor in the Department of Electrical Engineering, Lehigh University, Bethlehem, Pa., where he received his Ph.D. in 1968 on the topic of wave propagation in nonuniformly biased microwave ferrites.

From 1963 to 1965 he was concerned with the problem of plasma oscillations in solids. Since 1968 he has been a member of the Solid State Microwave Device Department of Bell Laboratories, Allentown, Pa. He has been involved in the design of lumped-element circulators, and IMPATT and microwave transistor amplifiers.



James C. Lin (S'65-M'71), for a photograph and biography please see page 539 of the June 1975 issue of this TRANSACTIONS.

Kaj Madsen was born in Denmark in 1943. He received the cand. scient. degree in mathematics from the University of Aarhus, Aarhus, Denmark, in 1968.

He has been a Lecturer in numerical analysis at the Technical University of Denmark, Lyngby, since 1968, apart from the academic year 1973-1974, when he was at the Atomic Energy Research Establishment, Harwell, Didcot, England. His fields of interest in teaching and research are optimization and interval analysis.

William V. McLevige (S'73) was born in Rockford, Ill., on July 1, 1952. He received the B.S. and M.S. degrees, both in electrical engineering, from the University of Illinois at Urbana-Champaign, Urbana, in 1974 and 1975, respectively.

While working toward the M.S. degree, he held a University Fellowship and worked in the Electromagnetics Laboratory at the University of Illinois. He is currently pursuing the Ph.D. degree at the University of Illinois, his research involving ion implantation in semiconductors.

Raj Mittra (S'54-M'57-SM'69-F'71) is Professor of Electrical Engineering and Associate Director of the Electromagnetics Laboratory, University of Illinois at Urbana-Champaign, Urbana. He has been a Visiting Professor at Oxford University, Oxford, England, as a Guggenheim Fellow, and at the Technical University of Denmark, Copenhagen. He has traveled extensively on domestic and international lecture tours on behalf of the University of Illinois and the IEEE. He is the author of more than 120 publications in the fields of analytical and computer-aided electromagnetics, microwave theory and techniques, coherent optics and holography, remote sensing, high-speed transportation, and so forth.

Ole Nielsen (S'73) was born in Glostrup, Denmark, on May 22, 1949. He received the M.Sc. degree in electrical engineering in 1974 from the Technical University of Denmark, Lyngby.

At present, he is studying toward the Ph.D. degree at the Technical University of Denmark, specializing in computer-aided design of GaAs FET amplifiers.

TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES from 1970 to 1973 and he is currently a member of the editorial boards of the *Journal of Applied Physics* and *Applied Physical Letters*. He is a Fellow of the American Physical Society, and is a member of the IEEE Magnetics Society, the IEEE Microwave Theory and Techniques Society, and Sigma Xi.

Hans Schjær-Jacobsen (S'72) was born in Løgumkloster, Denmark, on December 30, 1943. After being educated as an electronics technician, he received the M.Sc. degree in electrical engineering from the Technical University of Denmark, Lyngby, in 1972.

At present, he is with the Electromagnetics Institute, Technical University of Denmark, where he is working toward the Ph.D. degree. He has carried out research in the fields of analysis and computer-aided design

of antennas, microwave reflection amplifiers, and microwave filters. From 1972 to 1973 he worked on a research contract with the European Space Research Technical Center concerning multiple-beam satellite antennas. His current research interest is in the development and application of numerical optimization methods for designing antennas and circuits.

Ernst Schrömann (SM'71) received the M.S. and Ph.D. degrees, both in theoretical physics, from the University of Göttingen, Göttingen, Germany, in 1953 and 1954, respectively. From 1954 to 1955 he did postdoctoral work in theoretical solid-state physics at the Massachusetts Institute of Technology, Cambridge, under a Fulbright Scholarship.

In 1955 he became a full-time member of the Raytheon Research Division, Waltham, Mass., after having been employed on a part-time basis since November 1954. During the academic year 1961-1962 he served as a Visiting Associate Professor at the W. W. Hansen Microwave Laboratory, Stanford University, Stanford, Calif. In April 1964 he was advanced to the rank of Consulting Scientist in special recognition of his research achievements. In 1966 he served as a Visiting Professor at the University of Hamburg, Germany. He has published approximately 90 scientific papers, holds five patents, and has several patents pending.

Dr. Schrömann was a member of the editorial board of the IEEE

engineering.

Lars Thrane (S'75) was born in Copenhagen, Denmark, on November 27, 1948. He received the M.Sc. degree in electrical engineering from the Technical University of Denmark, Lyngby, in 1973.

Upon completing his studies, he joined the Electromagnetics Institute, Technical University of Denmark, where he has been working with systems engineering and design of microwave filters. He is presently working towards a Ph.D. degree in electrical

Robert J. Tiernan received the B.S. and M.S. degrees in physics from Boston College, Boston, Mass., and the Ph.D. degree in ceramics from the Massachusetts Institute of Technology, Cambridge.

He joined the Naval Research Laboratories, Washington, D. C., in 1959 where he set up an apparatus for measuring minority carrier lifetimes in semiconductors and determined the dependence of the structural and electrical properties of germanium thin films on evaporation parameters. In 1963 he worked in the Microelectronics Division at Sylvania Electric in Waltham, Mass., as a Senior Development Engineer. He was involved in setting up equipment for measuring resistivities, mobilities, and impurity concentrations of silicon thin-film devices. He also assisted in the development of improved electrical contacts to MOS and field effect devices. He joined the Raytheon Microwave Tube Operation, Waltham, Mass., in 1969 where he was involved in investigations of improved cooling techniques for high-power dissipation sources (specifically avalanche devices). He also worked on the development of improved attenuators and microwave windows for high-power tubes and doctor-blade techniques for ceramic substrates. Two years of his time at Raytheon were spent in the area of microwave ferrites, incorporating them into tubes and investigating their microwave loss performance near delay lines. He is employed at the Argonne National Laboratory, Argonne, Ill.

Dr. Tiernan is a member of Sigma Xi and the American Ceramic Society.